.. tip:: All input files can be downloaded: :download:`Files `. grimmedisp =========== .. contents:: :local: This keyword defines how to apply Grimme dispersion correction version 3, i.e. DFT-D3. Options ------------ .. hint:: **Always use DFT-D3 in your DFT calculations,** especially for weak interactions. Actually, it is recommended to use it in all cases. When there is no ``grimmedisp`` in the input file, no DFT-D3 will be applied. .. option:: type .. list-table:: :stub-columns: 1 :widths: 5 20 * - Value - ``bj`` Becke-Johnson DFT-D3 form * - - ``zero`` Zero-damp DFT-D3 form * - Default - None Define form of DFT-D3. There is no default value and you must assign ``bj`` or ``zero``. In most cases, ``bj`` is better, but for some functionals, like M06, M062X, and M06HF, only ``zero`` is available. .. option:: three_body Add three body corrections in DFT-D3. This is useful for large systems. .. option:: tz If triple zeta basis sets are used, this keyword may bring some improvement. Theoretical Background ------------------------ The DFT-D3 method is a dispersion correction to the DFT energy. It is based on the pair-wise summation of the damping functions. In modern DFT calculations, it is almost **always beneficial** to include DFT-D3 correction. So, it is recommended to use it in your **all** calculations. Input Examples ---------------- Examples: Weak Interactions in CH\ :sub:`4`-C\ :sub:`2`\ H\ :sub:`6`\ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This example shows the importance of the DFT-D3 correction in the calculation of weak interactions. For CH\ :sub:`4` and C\ :sub:`2`\ H\ :sub:`6`\ , both are nonpolar, and the interaction between them is very weak. To calculate the interactions, we simply use EDA method at B3LYP+D3BJ/def2-svp level of theory: .. code-block:: bash :linenos: :caption: disp-1.inp mol C -0.99275967 0.12491197 0.13574919 H -1.00662206 -0.95659619 0.18835421 H -0.34007185 0.51620582 0.90571860 H -0.63121516 0.43418579 -0.83650623 H -1.99486438 0.50482451 0.28603834 C 2.95955795 -0.58352084 -0.35430634 H 3.53618084 -1.49857448 -0.47007336 H 3.33520181 -0.05007297 0.51638813 C 3.07143559 0.28355041 -1.59942759 H 1.92316063 -0.85399112 -0.16804950 H 4.10875722 0.55492780 -1.78655076 H 2.69486480 -0.24574724 -2.47236370 H 2.49506428 1.19877654 -1.48025100 end basis def2-svp end scf charge 0 spin2p1 1 type U # For EDA, this must be set explicitly. end grimmedisp type bj end eda type tso frag 0 1 1-5 # Define CH4. frag 0 1 6-13 # Define C2H6. end task eda b3lyp end The output is: .. code-block:: bash :linenos: :caption: disp-1.out WITH BSSE correction: Electrostatic interaction energy: -0.13 kcal/mol Exchange-correlation interaction energy: 0.48 kcal/mol Polarization interaction energy: -0.00 kcal/mol Charge transfer interaction energy: -0.11 kcal/mol Grimme s dispersion interaction: -0.87 kcal/mol ---------------------------------------------------------------- Total interaction energy: -0.62 kcal/mol Thus, the interaction energy between CH\ :sub:`4` and C\ :sub:`2`\ H\ :sub:`6`\ is ``-0.62 kcal/mol``. The dispersion energy is ``-0.87 kcal/mol``, which is the most important part of the interaction energy. Without DFT-D3, the interaction energy would be ``-0.62``-``-0.87`` = ``+0.25`` kcal/mol! Therefore, the complex is unbound without DFT-D3! This leads to a **quantitative error** in the interaction energy. Therefore, **always use DFT-D3 in your DFT calculations.**